Basic Science Department

Mathematics II Code: Math 102

Final Exam: May 2014 Time Allowed: **2** Hours

Academic year: 2013 / 2014

Semester: Spring

Examiners: Dr. Mona Samir

Dr. Mohamed Eid

3

2

2

2

4

4

2

2

3

3

2

2

3

3

Answer All questions

tions Faculty of Engineering No. of Questions: 4 Total Mark: 40 ممنوع إستخدام المحمول كألة حاسبة. يُسمح فقط باستخدام الألة الحاسبة العادية

Do not use Mobile as Calculator. Only use regular Calculator

Question 1

(a) Prove using mathematical induction that for all $n \ge 1$,

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{1}{2}n(3n - 1)$$

- (b) Find the sum of **n** terms of the series: $\sum_{r=1}^{n} \frac{1}{r(r+1)}$
- (c) Using Horner's method, divide $(x^4 6x^3 + 28x 30)$ by (x 5).
- (d) If α_1 , α_2 , α_3 , α_4 are the roots of the equation: $2x^4 4x^3 12x^2 + 16 = 0$. Then find: (i) $\sum_{i=1}^4 (\alpha_i)^2$ (ii) the roots if they form geometric series.

Ouestion 2

- (a) Evaluate $(-4 8i)^{2/3}$
- (b) Find the eigenvalues and the eigenvectors of the matrix $A = \begin{bmatrix} -5 & 0 & 0 \\ 3 & 7 & 0 \\ 4 & -2 & 3 \end{bmatrix}$.
- (c) Solve the following linear system using inverse matrix: -y-z+2x=4, 4y-2z-11=-3x, 4z-2y+3x=11.

Question 3

- (a)State the definition of the parabola.
- (b) Show that the circles $x^2 + y^2 + 4x + 2y 3 = 0$, $x^2 + y^2 6x + 6y 3 = 0$
- (c) Write the equation of circle where the points (2, 1), (0, -3) are ends of diameter. Also, find the equation of tangent at the point (2, 1).
- (d) Find center, vertices and sketch the ellipse $4x^2 + y^2 8x + 4y + 4 = 0$.

Question 4

- (a) Write the equation of the sphere of radius 2 and its center at the point (1, 2, -2).
- (b)Describe the surface $2x^2 y^2 3z^2 = 0$.
- (c) Write the equation of the plane that passes through the point (1, -1, 3) and parallels to the plane 2x + y 2z = 3.
- (d)Determine the value of c such that the following equation represents pair of lines: $2x^2 + 3xy + y^2 x + c = 0$.

Basic Science Department
Math. 2 Code: Math 102
Mid-Term Exam: April 2014
Time Allowed: 60 Minutes

Academic year: 2013 / 2014

Semester: Spring

Examiners: Dr. Mona Samir

Dr. Mohamed Eid

Total Mark: 30

4

3

2

3

4

Answer All questions

ممنوع إستخدام المحمول كألة حاسبة يسمح فقط باستخدام الألة الحاسبة العادية Do not use Mobile as Calculator. Only use regular Calculator

[1] Using mathematical induction to prove the validity of the following:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

- [2] Find the sum of **n** terms of the series: $\sum_{r=1}^{n} (r^2 4)(r + 3)$.
- [3] Using Horner's method, divide $f(x) = 2x^4 + 4x^3 x + 16$ by (x + 4), then find f`(6).
- [4] Using the binomial theorem, expand $(4x^3 12)^{-4}$.

A. Geometry: Answer in a separate paper

- [1] State the definition of the parabola.
- [2] Write the equation of circle where the points (1, 2), (-1, 3) are ends of diameter.
- [3] Write the equation of tangent to the circle $x^2 + y^2 2x 4y + 3 = 0$ at (2, 3).
- [4] Find vertex, focus and sketch the parabola $y^2 + 8x + 2y 7 = 0$.
- [5] Find center, vertices and sketch the ellipse $x^2 + 4y^2 4x 8y + 4 = 0$.

Good luck

Dr. Mona Samir

Dr. Mohamed Eid

W1	ID	Name

[1]State the definition of the plane.

[2] Write the equation of the plane that passes through the points (1, -1, 0), (-1, 1, 2), (3, 0, -1).

[3]Describe the surface $x^2 - 2y^2 + z^2 = 0$.

[4]Determine the type of the curve $3x^2 - 8xy - 3y^2 - 2x - 4y = 0$.

.....

W2	ID	Name

[1]State the definition of the sphere.

[2] Find the angle between the planes: 2x - 2y + z - 1 = 0, 3x - 4z + 2 = 0.

[3] Write the equation of the sphere with center (1, -1, -2), radius 3.

[4] Determine the type of the curve $2x^2 - 3xy + 2y^2 - 16 = 0$.

.....

W3	ID	Name

[1]State the definition of the hyperbola.

[2] Write the equation of the plane that passes through the point (2, -1, 3) and its normal vector is $\overrightarrow{U}=i-2j+3k$ [3]Describe the surface $x^2+y^2+z^2-3y+2z-1=0$.

[4] Determine the type of the curve $x^2 + 2xy + y^2 + x = 0$.

W4	ID	Name

[1]State the definition of the plane.

[2] Find the angle between the planes: x - y + 3z - 1 = 0, 4x + y - z + 2 = 0.

[3] Write the equation of the sphere with center (0, 0, -3), radius 3.

[4] Determine the type of the curve $x^2 - 4xy + 4y^2 - x + 3y - 2 = 0$.

.....

T1	ID Name				
[1]State the	[1]State the definition of the plane.				
[2]Write the	[2] Write the equation of the plane that passes through the points $(1, 2, 0), (-1, 1, 2),$				
(3, 0, 3).					
[3]Describe	the surface $y^2 - 3x^2$	$+z^2=0.$			
[4]Find the	center, vertices and ske	tch of the hyperbola $4x^2 - y^2 + 16x - 4y + 16 = 0$			

T2	ID	Name
11State the	definition of the hyper	hola

[1]State the definition of the hyperbola.

[2] Write the equation of the sphere with center (1, 0, -2), radius 2.

[3] Write the equation of the plane that passes through the point (1, -2, 3) and its normal vector is $\vec{U} = 3i - 2j + k$

[4] Find the center, vertices and sketch of the hyperbola $4x^2 - y^2 + 24x + 4y + 36 = 0$

.....

T3	ID	Name	
[1]State t	he definition of	the sphere.	

[2] Write the equation of the plane that passes through the point (1, 1, -3) and its normal vector is $\vec{U} = 3i - 2k$ [3]Describe the surface $x^2 + y^2 + z^2 - 4y + 3z = 0$.

[4] Find the center, vertices and sketch of the hyperbola $x^2 - 4y^2 + 4x - 16y - 16 = 0$

T4	ID	Name

[1]State the definition of the hyperbola.

[2] Write the equation of the plane that passes through the points (2, 2, 1), (-1, 1, 2), (3, 0, -2).

[3]Describe the surface $x^2 + z^2 - 3 = 0$.

[4] Find the center, vertices and sketch of the hyperbola $x^2 - y^2 + 4x + 6y + 4 = 0$

.....

M1	Group	ID	Name

- [1]State the definition of the circle.
- [2]Write the equation of straight line that passes through the points (2, -1), (0, 3). [3]Find the radical axis of the circles $x^2 + y^2 + 4x + y 4 = 0$, $x^2 + y^2 + y 1 = 0$
- [4] Find vertex, focus and sketch the parabola $x^2 + 4x + 8y 4 = 0$.
- [5] Write the equation of circle where the points (2, -1), (0, 3) are ends of diameter and find its center.

M2	Group	ID	Name

- [1]State the definition of the parabola.
- [2] Find vertex, focus and sketch the parabola $x^2 + 4x + 8y 4 = 0$.
- [3] Write the equation of circle where the points (2, -1), (0, 3) are ends of diameter and find its center.
- [4]Write the equation of straight line that passes through the points (2, -1), (0, 3). [5]Find the radical axis of the circles $x^2 + y^2 + 4x + y 4 = 0$, $x^2 + y^2 + y 1 = 0$

M3	Group	ID	Name

- [1]State the definition of the straight line.
- [2] Write the equation of straight line that passes through the points (2, -1), (0, 3).
- [3]Write the equation of circle where the points (2, -1), (0, 3) are ends of diameter and find its center.
- [4] Find the radical axis of the circles $x^2 + y^2 + 4x + y 4 = 0$, $x^2 + y^2 + y 1 = 0$
- [5] Find vertex, focus and sketch the parabola $x^2 + 4x + 8y 4 = 0$.

M4	Group	ID	Name

[1]State the definition of the circle.

[2] Find the radical axis of the circles $x^2 + y^2 + 4x + y - 4 = 0$, $x^2 + y^2 + y - 1 = 0$

[3] Write the equation of straight line that passes through the points (2, -1), (0, 3).

[4]Write the equation of circle where the points (2, -1), (0, 3) are ends of diameter and find its center.

[5] Find vertex, focus and sketch the parabola $x^2 + 4x + 8y - 4 = 0$.

N1	Group	ID	Name

- [1]State the definition of the parabola.
- [2]Write the equation of circle with center (2, -1) and radius 3. [3]Show that the circles $x^2 + y^2 + 4x + 1 = 0$, $x^2 + y^2 + y 1 = 0$ are orthogonal.
- [4] Write the equation of straight line that passes through the point (2, -1) and parallels to the line 2x - 3y + 1 = 0
- [5] Find vertex, focus and sketch the parabola $y^2 + 4x + 8y 4 = 0$.

N2	Group	ID	Name

[1]State the definition of the circle.

[2]Show that the circles $x^2 + y^2 + 4x + 1 = 0$, $x^2 + y^2 + y - 1 = 0$ are orthogonal.

[3]Write the equation of straight line that passes through the point (2, -1) and parallels to the line 2x - 3y + 1 = 0.

[4] Write the equation of circle with center (2, -1) and radius 3.

[5] Find vertex, focus and sketch the parabola $y^2 + 4x + 8y - 4 = 0$.

N3	Group	ID	Name

- [1]State the definition of the line.
- [2] Write the equation of straight line that passes through the point (2, -1) and parallels to the line 2x - 3y + 1 = 0
- [3] Find vertex, focus and sketch the parabola $y^2 + 4x + 8y 4 = 0$.
- [4]Write the equation of circle with center (2, -1) and radius 3. [5]Show that the circles $x^2 + y^2 + 4x + 1 = 0$, $x^2 + y^2 + y 1 = 0$ are orthogonal.

N4	Group	ID	Name

- [1]State the definition of the parabola.
- [2] Write the equation of circle with center (2, -1) and radius 3.
- [3] Write the equation of straight line that passes through the point (2, -1) and parallels to the line 2x-3y+1=0 [4]Show that the circles $x^2+y^2+4x+1=0$, $x^2+y^2+y-1=0$ are orthogonal.
- [5] Find vertex, focus and sketch the parabola $y^2 + 4x + 8y 4 = 0$.